平行四边形的面积教案

时间:2025-12-09 04:30:09
平行四边形的面积教案15篇(推荐)

平行四边形的面积教案15篇(推荐)

作为一位无私奉献的人民教师,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。快来参考教案是怎么写的吧!以下是小编整理的平行四边形的面积教案,欢迎阅读与收藏。

平行四边形的面积教案1

一、教学目标:

1、理解和掌握平行四边形的面积计算公式。

2、会计算平行四边形的面积。

二、教学重点:

理解公式并正确计算平行四边形的面积。

三、教学难点:

理解平行四边形的面积公式的推导过程。

四、学具准备:平行四边形纸

五、教学过程:

(一)、板书课题,揭示目标

同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)

平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)

一个方格代表12,不满一格的都按半格计算。

谁来数一数两个图形的面积各是多少?(出示)

平行四边形的底和高各是多少?(出示)

长方形的长和宽各是多少?(出示)

(出示)你发现了什么?

同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)

本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)

要想完成学习目标,还要靠同学们认真自学,请看自学指导。

(二)出示自学指导

1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。

2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?

(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)

现在开始自学,注意看书的姿势,用剪刀时要注意安全!

(三)、学生自学

1、学生看书自学,教师巡视,督促每个学生都能认真自学。

2、检测学生自学效果

师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)

观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的`宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?

想一想平行四边形的面积应该怎样计算?(师板书面积公式)

教师小结(展示动画):

同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。

(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)

下面就用你所学的知识去解决一下实际问题。

出示检测题

出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?

抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。

(四)、后教

1、学生自由更正

在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。

2、讨论归纳

问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?

板书:写公式——代入数——计算(单位)——写答话。

(五)、当堂训练

1、

2、

(六)、全课总结

这节课,你有什么收获?

六、板书设计

平行四边形的面积

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

写公式——代入数——计算(单位)——写答话

5

平行四边形的面积教案2

一、所在班级情况,学生特点分析

本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

二、 教学内容分析

平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

三、 教学目标

1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

四、 教学难点分析

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

五、 教学课时

一课时。

六、 教学过程

(一)复习

1、做一做,说一说。

师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。

2、复习长方形面积计算公式

我们学过长方形面积的计算公式,谁能说出长方形面积的计算

公式?

生:长方形面积=长×宽

……此处隐藏20695个字……四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。

4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。

5.思考:面积相等的平行四边形一定等底等高吗?为什么?

【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。

四、总结提示

教师:回忆一下,今天这节课有什么收获?

总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。

【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。

平行四边形的面积教案14

教学目标:通过练习,使学生进一步理解和掌握平行四边形的面积计算的公式,能够熟练地进行有关的平行四边形的面积计算。此外,还要使学生明白:平行四边形的面积是一条底和这条底边上的高的乘积;等底等高的平行四边形面积相等。

教学重点:理解等底等高的平行四边形面积相等。

教学过程:

一、复习基础知识

1、请你说一说平行四边形的面积推导过程。(先同桌说,再指名说)

得到:S=AH

2、计算下面平行四边形的面积。(单位:厘米)

7.59.2

14

(1)让生独立做。

(2)检查,可能有两种情况:

14×7.5=105(平方厘米)14×9.2=128.8(平方厘米)

(3)讨论:你认为哪种正确?请说出理由。

(4)得到:平行四边形的面积,是一条底和这条底上的高的乘积。

3、先量出下面两个平行四边形的底和高,再算出它们的面积。

1.5厘米1.5厘米

2厘米2厘米

(1)让学生量一量,算一算。

(2)检查:两个图形的面积都是2×1.5=3(平方厘米)

(3)讨论:通过计算这两个平行四边形的面积,你得到什么结论?

(4)得到:等底等高的`平行四边形面积相等。(强调“等底等高”的意思,帮助学生理解。)

二、练习

1、选择适当的底和高,计算下面各个平行四边形的面积。(单位:厘米)

10

5624

12

18

20

2、量出下面两个平行四边形的底和高,分别计算它们的面积。

3、有一块平行四边形的铁皮,底是8.5厘米,高是7.2厘米,面积是多少平方厘米?

4、一块平行四边形的土地,底是27米,是高的3倍。这块地的面积是多少平方米?

5、有一块平行四边形的钢板,底是4.6米,高是5米,求它的面积。这种钢板1平方米重59千克,这块平行四边形钢板重多少千克?

6、下面两个平行四边形的面积有什么关系?

8厘米

12厘米

7、填空。

(1)平行四边形的底不变,高扩大2倍,面积()。

(2)平行四边形的底和高都扩大2倍,面积()。

(3)平行四边形的底扩大6倍,高缩小2倍,面积()。

三、总结。

平行四边形的面积教案15

教学目标:

1、在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3、培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:理解并掌握平行四边形的`面积公式

教学难点:理解平行四边形面积公式的推导过程

教学过程:

一、复习导入:

1、说出学过的平面图形。

2、在这些图形中,哪些图形的面积你会求?

二、探究新知:

1、教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

(2)出示例1中的第2组图

要求:不用刚才的方法还能比较这两个图形的大小吗?(学生交流,教师适当强调“转化”的方法。)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。今天我们来研究“平行四边形面积的计算”。(板书课题)

2、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成学过的图形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③到斜边重合。

第二种:①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③道斜边重合。

(4)教室用课件进行演示并小结。

师:沿着平行四边形的任意一条稿剪开,再通过平移,都可以把平行四边形转化成一个长方形。

(5)小组讨论:

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长与平行四边形的底有什么关系?

③长方形的宽与平行四边形的高有什么关系?

(6)学生总结,形成下面的板书:

长方形的面积=长X宽

平行四边形的面积=底X高

3、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第123页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。

转化后的长方形平行四边形

长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)

(2)学生操作,反馈交流。

(3)用字母表示面公式:S=ah(板书)

三、巩固练习:

1、指导完成试一试:明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

2、指导完成练一练:强调底和高的对应关系。

四、总结:

师:通过今天的学习有哪些收获?

板书设计:平行四边形面积的计算转化

已学过的图形新图形割补、剪拼

因为长方形的面积=长×宽

所以平行四边形的面积=底×高

课后札记:

《平行四边形的面积教案15篇(推荐).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式